Quiz

• For the below FA, write left linear and write linear grammar.

 $S \rightarrow F|aA|bB$ $A \rightarrow aB|bC$ $B \rightarrow aB|bD$ $C \rightarrow aC|bC|F$ $D \rightarrow aD|bD|F$ $F \rightarrow \varepsilon$

 $S \rightarrow A|E|D$ $A \rightarrow \varepsilon$ $B \rightarrow Aa$ $C \rightarrow Ca|Ab|Ba$ $D \rightarrow Da|Db|Cb$ $E \rightarrow Ea|Eb|Bb$

Formal languages and automata

Identifying Nonregular Languages

> https://t.me/fla_uog mh.olyaee@gmail.com

Regular or not?

- Given language *L* how can we check if it is not a regular language ?
 - The answer is not obvious.
 - Not being able to design a DFA does not constitute a proof!

The Pigeonhole principle

• If there are *n* pigeons and *m* holes and n > m, then at least one hole has > 1 pigeons.

 What do pigeons have to do with regular languages?

- With strings *a*, *aa* or *aab*, no state is repeated
- With strings aabb, bbaa, abbabb or abbbabbabb, a state is repeated
- In fact, for any ω where $|\omega| \ge 4$, some state has to repeat? Why?

- When traversing the DFA with the string ω, if the number of transitions ≥ number of states, some state q has to repeat!
- Transitions are pigeons, states are holes.

Pumping a string

• Consider a string $\omega = xyz$

|y| ≥ 1
|xy| ≤ m (m the number of states)

• Consider a string $\omega = xyz$

- If $\omega = xyz \in L$ that so are $xy^i z$ for all $i \ge 0$
- The substring *y* can be pumped.
- So if a DFA accepts a sufficiently long string, then it accepts an infinite number of strings!

The Pumping Lemma

LEMMA

Given an infinite regular language L

- There exists an integer m such that
- for any string $\omega \in L$ with length $|\omega| \geq m$,
- we can write $\omega = xyz$ with $|y| \ge 1$ and $|xy| \le m$,
- such that the strings xyⁱz for i = 0, 1, 2... are also in L

Thus any sufficiently long string can be "pumped."

Example • $L = \{a^n b^n | n \ge 0\}$

- $L = \{a^n b^n \mid n \ge 0\}$
- Assume L is regular
- We must pick an string $s \in L$ which |s| > m

- $L = \{a^n b^n \mid n \ge 0\}$
- Assume L is regular
- We must pick an string $s \in L$ which |s| > m
- Let $s = a^m b^m$, $|a^n b^n| = 2m > m$

- $L = \{a^n b^n \mid n \ge 0\}$
- Assume L is regular
- We must pick an string $s \in L$ which |s| > m
- Let $s = a^m b^m$, $|a^n b^n| = 2m > m$
- Let s=XYZ
- Let $a^m = XY$, $b^m = Z$. So, Y is a string of 'a's.
- It is confirmed that | XY | <=m and | Y | >=1

• Since $XYZ \in L$, then $XY^iZ \in L$, too (i>1)

- Since $XYZ \in L$, then $XY^iZ \in L$, too (i>1)
- i.e. $XYYZ \in L$, $XYYYZ \in L$ and etc.
- $XYYZ = a^{m+1}b^m$
- $XYYYZ = a^{m+2}b^m$
- $XY^iZ = a^{m+i}b^m$

- Since $XYZ \in L$, then $XY^iZ \in L$, too (i>1)
- i.e. $XYYZ \in L$, $XYYYZ \in L$ and etc.
- $XYYZ = a^{m+1}b^m$
- $XYYYZ = a^{m+2}b^m$
- $XY^iZ = a^{m+i}b^m$

\mathbf{X}

- L
 - = {palindromes strings on {a, b} of odd length]
- We want to prove that L is not regular

- L
 - = {palindromes strings on {a, b} of odd length]
- We want to prove that L is not regular
- We select $a^m b a^m$ as s.
 - It definitely belongs to L
 - Its length is odd

- L
 - = {palindromes strings on {a, b} of odd length]
- We want to prove that L is not regular
- We select $a^m b a^m$ as s.
 - It definitely belongs to L
 - Its length is odd
- XYZ= $a^m b a^m$. XY= a^m which |XY|<=m.
- Therefore, Y can be ' a^k ' where 1<=k<=m

- *L* =
 - {palindromes strings on {a, b} of odd length}
- We want to prove that L is not regular
- We select $a^m b a^m$ as s.
 - It definitely belongs to L
 - Its length is odd
- XYZ= $a^m b a^m$. XY= a^m which |XY|<=m.
- Therefore, Y can be ' a^k ' where 1<=k<=m
- XYYZ= $a^{m+k}ba^m$ 🔆

- In other word, When we have to remember and count with infinity, So the corresponding language can not be regular!
- Consider $L = \{a^n b^m\}$

n = m $n \neq m$ $n \leq m$

n, m > 0

Consider $L = \{ \omega | n_a(\omega) < n_b(\omega) \}$

Consider
$$L = \{1^{n^2} | n \ge 0\}$$

• Consider $L = \{a^n b^m c^n \mid n, m > 0\}$

• Consider
$$L = \{a^i b^j c^k \mid \dots\}$$

 $i, j, k > 0$
 $i + j = k$

• Consider $L = \{a^{2n}b^{2n} \mid n < 1000\}$

• Consider $L = \left\{ a^i b^j c^k \; \middle| \; i+j < k \; and \; k < 10 \right\}$

• Consider
$$L = \{a^i b^j c^k \mid i+j < k \text{ and } k = 10\}$$

• Consider
$$L = \{a^i b^j c^k \mid i+j > k \text{ and } k = 10\}$$

• Consider $L = \left\{ a^i b^j c^k \; \middle| \; i+j < k \; and \; k > 10 \right\}$

• Consider $L = \{a^n b^m \mid n + m = 2k + 1\}$

• Consider $L = \{WW^R \mid W \in \Sigma^*\}$

• Consider $L = \{WCW^R \mid W \in \Sigma^*\}$

• Consider $L = \{WW \mid W \in \Sigma^*\}$

• Consider $L = \{UWW^RV \mid U, V, W \in \Sigma^*\}$

- Consider $L = \{UWW^RV \mid U, V, W \in \Sigma^*\}$
- It is regular!, because for each input string, we can suppose $w = \lambda$
- Let aababaaab
- Let aababaaab

• Consider $L = \{UWW^RV \mid U, V, W \in \Sigma^+\}$

- Consider $L = \{UWW^RV \mid U, V, W \in \Sigma^+\}$
- It is regular and we just find 'aa' or 'bb' in the input string.

• Consider $L = \{WW^R V \mid V, W \in \Sigma^+\}$

• $L = \{a^i b^j c^k | i - j < k, k < 10\}$

•
$$L = \{a^n b^i | n - i = 2\}$$

•
$$L = \{a^n b^i | |n - i| = 2\}$$

• $L = \{a^n | n > 1000 \text{ or } n \text{ is prime}\}$

True/False

True/False

If L_1 is not regular and L_2 is regular then $L = L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$ is not regular. $L = \{a^i b^j a^k : i + k < 10 \text{ and } j > 10\}$ is not regular.

 $L = \{a^i b^j : i + j \ge 10\}$ is not regular.

$L = \{w \in \{a, b\}^* : n_a(w) \times n_b(w) = 0 \mod 2\}$ is regular.

If $L_1 \cap L_2$ is regular then L_1 and L_2 are regular.

If $L_1 \subseteq L_2$ and L_2 is regular, then L_1 must be regular.

If L_1 and L_2 are nonregular, then $L_1 \cup L_2$ must be nonregular.

There are subsets of a regular language which are not regular.

If L is nonregular then \overline{L} is nonregular.