Quiz

- For the below FA, write left linear and write linear grammar.

- Solution:

$$
\begin{gathered}
S \rightarrow F|a A| b B \\
A \rightarrow a B \mid b C \\
B \rightarrow a B \mid b D \\
C \rightarrow a C|b C| F \\
D \rightarrow a D|b D| F \\
F \rightarrow \varepsilon
\end{gathered}
$$

- Solution:

$$
\begin{gathered}
S \rightarrow A|E| D \\
A \rightarrow \varepsilon \\
B \rightarrow A a \\
C \rightarrow C a|A b| B a \\
D \rightarrow D a|D b| C b \\
E \rightarrow E a|E b| B b
\end{gathered}
$$

Formal languages and automata
 Identifying Nonregular
 Languages

https://t.me/fla_uog
mh.olyaee@gmail.com

Regular or not?

- Given language L how can we check if it is not a regular language ?
- The answer is not obvious.
- Not being able to design a DFA does not constitute a proof!

The Pigeonhole principle

- If there are n pigeons and m holes and $n>m$, then at least one hole has >1 pigeons.

- What do pigeons have to do with regular languages?
- Consider the DFA

- With strings a, $a a$ or $a a b$, no state is repeated
- With strings aabb, bbaa, abbabb or abbbabbabb, a state is repeated
- In fact, for any ω where $|\omega| \geq 4$, some state has to repeat? Why?
- When traversing the DFA with the string ω, if the number of transitions \geq number of states, some state q has to repeat!
- Transitions are pigeons, states are holes.

Pumping a string

- Consider a string $\omega=x y z$

- $|y| \geq 1$
- $|x y| \leq m$ (m the number of states)
- Consider a string $\omega=x y z$

- If $\omega=x y z \in L$ that so are $x y^{i} z$ for all $i \geq 0$
- The substring y can be pumped.
- So if a DFA accepts a sufficiently long string, then it accepts an infinite number of strings!

The Pumping Lemma

LEMMA

Given an infinite regular language L

- There exists an integer m such that
(0) for any string $\omega \in L$ with length $|\omega| \geq m$,
- we can write $\omega=x y z$ with $|y| \geq 1$ and $|x y| \leq m$,
- such that the strings $x y^{i} z$ for $i=0,1,2 \ldots$ are also in L
Thus any sufficiently long string can be "pumped."

Example

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Example

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Assume L is regular
- We must pick an string $\mathrm{s} \in L$ which $|\mathrm{s}|>\mathrm{m}$

Example

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Assume L is regular
- We must pick an string $\mathrm{s} \in L$ which $|\mathrm{s}|>\mathrm{m}$
- Let $\mathrm{s}=a^{m} b^{m},\left|a^{n} b^{n}\right|=2 \mathrm{~m}>\mathrm{m}$

Example

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Assume L is regular
- We must pick an string $\mathrm{s} \in L$ which $|\mathrm{s}|>\mathrm{m}$
- Let $\mathrm{s}=a^{m} b^{m},\left|a^{n} b^{n}\right|=2 \mathrm{~m}>\mathrm{m}$
- Let $s=X Y Z$
- Let $a^{m}=\mathrm{XY}, b^{m}=\mathrm{Z}$. So, Y is a string of 'a's.
- It is confirmed that $|\mathrm{XY}|<=\mathrm{m}$ and $|\mathrm{Y}|>=1$
- Since XYZ $\in L$, then $X Y^{i} Z \in L$, too (i>1)
- Since XYZ $\in L$, then $X Y^{i} Z \in L$, too ($\mathrm{i}>1$)
- i.e. $X Y Y Z \in L, X Y Y Y Z \in L$ and etc.
- $X Y Y Z=a^{m+1} b^{m}$
- $X Y Y Y Z=a^{m+2} b^{m}$
- $X Y^{i} Z=a^{m+i} b^{m}$
- Since XYZ $\in L$, then $X Y^{i} Z \in L$, too ($\mathrm{i}>1$)
- i.e. $X Y Y Z \in L, X Y Y Y Z \in L$ and etc.
- $X Y Y Z=a^{m+1} b^{m}$
- $X Y Y Y Z=a^{m+2} b^{m}$
- $X Y^{i} Z=a^{m+i} b^{m}$

Example

- L
$=\{$ palindromes strings on $\{a, b\}$ of odd length $\}$
- We want to prove that L is not regular

Example

- L
$=\{$ palindromes strings on $\{a, b\}$ of odd length $\}$
- We want to prove that L is not regular
- We select $a^{m} b a^{m}$ as s.
- It definitely belongs to L
- Its length is odd

Example

- L
$=\{$ palindromes strings on $\{a, b\}$ of odd length $\}$
- We want to prove that L is not regular
- We select $a^{m} b a^{m}$ as s.
- It definitely belongs to L
- Its length is odd
- $\mathrm{XYZ}=a^{m} b a^{m} . \mathrm{XY}=a^{m}$ which $|\mathrm{XY}|<=\mathrm{m}$.
- Therefore, Y can be ' a^{k} ' where $1<=\mathrm{k}<=\mathrm{m}$

Example

- $L=$
\{palindromes strings on $\{a, b\}$ of odd length $\}$
- We want to prove that L is not regular
- We select $a^{m} b a^{m}$ as s.
- It definitely belongs to L
- Its length is odd
- $\mathrm{XYZ}=a^{m} b a^{m} . \mathrm{XY}=a^{m}$ which $|\mathrm{XY}|<=\mathrm{m}$.
- Therefore, Y can be ' a^{k} ' where $1<=\mathrm{k}<=\mathrm{m}$
- $\mathrm{XYYZ}=a^{m+k} b a^{m} \quad \mathbb{X}$
- In other word, When we have to remember and count with infinity, So the corresponding language can not be regular!
- Consider $L=\left\{a^{n} b^{m}\right\}$

$$
\begin{aligned}
& n=m \\
& n \neq m \\
& n \leq m \\
& n, m>0
\end{aligned}
$$

Consider $L=\left\{\omega \mid n_{a}(\omega)<n_{b}(\omega)\right\}$

Consider $L=\left\{1^{n^{2}} \mid n \geq 0\right\}$

- Consider $L=\left\{a^{n} b^{m} c^{n} \mid n, m>0\right\}$
- Consider $L=\left\{a^{i} b^{j} c^{k} \mid \ldots.\right\}$

$$
i, j, k>0
$$

$$
i+j=k
$$

- Consider $L=\left\{a^{2 n} b^{2 n} \mid n<1000\right\}$
- Consider $L=\left\{a^{i} b^{j} c^{k} \mid i+j<k\right.$ and $\left.k<10\right\}$
- Consider $L=\left\{a^{i} b^{j} c^{k} \mid i+j<k\right.$ and $\left.k=10\right\}$
- Consider $L=\left\{a^{i} b^{j} c^{k} \mid i+j>k\right.$ and $\left.k=10\right\}$
- Consider $L=\left\{a^{i} b^{j} c^{k} \mid i+j<k\right.$ and $\left.k>10\right\}$
- Consider $L=\left\{a^{n} b^{m} \mid n+m=2 k+1\right\}$
- Consider $L=\left\{W W^{R} \mid W \in \Sigma^{*}\right\}$
- Consider $L=\left\{W C W^{R} \mid W \in \Sigma^{*}\right\}$
- Consider $L=\left\{W W \mid W \in \Sigma^{*}\right\}$
- Consider $L=\left\{U W W^{R} V \mid U, V, W \in \Sigma^{*}\right\}$
- Consider $L=\left\{U W W^{R} V \mid U, V, W \in \Sigma^{*}\right\}$
- It is regular!, because for each input string, we can suppose $w=\lambda$
- Let aababaaab
- Let aababaaab
- Consider $L=\left\{U W W^{R} V \mid U, V, W \in \Sigma^{+}\right\}$
- Consider $L=\left\{U W W^{R} V \mid U, V, W \in \Sigma^{+}\right\}$
- It is regular and we just find 'aa' or 'bb' in the input string.
- Consider $L=\left\{W W^{R} V \mid V, W \in \Sigma^{+}\right\}$

$$
\cdot L=\left\{a^{i} b^{j} c^{k} \mid i-j<k, k<10\right\}
$$

$$
\text { - } L=\left\{a^{n} b^{i} \mid n-i=2\right\}
$$

- $L=\left\{a^{n} b^{i}| | n-i \mid=2\right\}$
- $L=\left\{a^{n} \mid n>1000\right.$ or n is prime $\}$

True/False

True/False

If L_{1} is not regular and L_{2} is regular then
$L=L_{1} L_{2}=\left\{x y: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ is not regular.
$L=\left\{a^{i} b^{j} a^{k}: i+k<10\right.$ and $\left.j>10\right\}$ is not regular.
$L=\left\{a^{i} b^{j}: i+j \geq 10\right\}$ is not regular.
$L=\left\{w \in\{a, b\}^{*}: n_{a}(w) \times n_{b}(w)=0 \bmod 2\right\}$ is regular.

If $L_{1} \cap L_{2}$ is regular then L_{1} and L_{2} are regular.

If $L_{1} \subseteq L_{2}$ and L_{2} is regular, then L_{1} must be regular.

If L_{1} and L_{2} are nonregular, then $L_{1} \cup L_{2}$ must be nonregular.

There are subsets of a regular language which are not regular.

If L is nonregular then \bar{L} is nonregular.

