Formal languages and automata

Regular Grammars

https://t.me/fla_uog mh.olyaee@gmail.com

Grammar

• Definition:

- Each grammar describes its relating language exactly.
- A grammar is defined as a fivetuple G(V,T,S,P)

- V: set of variables
- T: set of terminals
- S: start variable
- P: set of production rules
 - Each rule is based on the below template:
 - $x \to y$
 - In the above rule, we have:
 - $x \in \{V \cup T\}^+$ and $y \in \{V \cup T\}^*$

- Example:
 - Let T={a,b}, V={S,A,B}
 - • $S \rightarrow aA$
 - $\cdot A \rightarrow aA|bB$
 - $B \rightarrow bB | \lambda$

- Example:
 - Let $T=\{a,b\}$, $V=\{S,A,B\}$
 - $S \rightarrow aA$
 - $A \rightarrow aA | bB$
 - $B \rightarrow bB | \lambda$
 - $S \rightarrow aA \rightarrow aaA \rightarrow aaaA \rightarrow aaabB \rightarrow aaabbB \rightarrow aaabb$ • $S \rightarrow aA \rightarrow aaA \rightarrow aabB \rightarrow aab$

Derivation

• Suppose $W \in L(G)$, Next we have:

$$\bullet S \to W_1 \to W_2 \to \cdots \to W_n \to W$$

• The above path which is named as a derivation for W.

- $\bullet S \to aSb|\varepsilon$
- Test it!

- $S \rightarrow Ab$
- $A \rightarrow aAb$
- $\bullet A \to \varepsilon$

- $S \rightarrow SS$
- $\bullet \: S \to \varepsilon$
- $S \rightarrow aSb$
- $S \rightarrow bSa$

• $S \rightarrow aSbb|\varepsilon$

 $\bullet S \to aSb|aSbb|\varepsilon$