‘\’ ‘-\v

)ﬂ)

) A
‘!’ '\ ™

1 https //t.me/fla_uog \ (m m

~ mh. 0|Yaee@gmall com

R A
/ P\ \) f‘\‘ :)\\)/,‘) ""\(1\(f\(&"

N D

/

.e:\) VA Ve (R \(a

= Study of abstract computing devices, or “machines”
= Automaton = an abstract computing device
= Note: A “device” need not even be a physical hardware!

= Computations happen everywhere: On your laptop, on your cell
phone, in nature, ...

s A fundamental question in computer science:
= Find out what different models of machines can do and cannot do

(A pioneer of automata theory)

Alan Turing (1912-1954)

Father of Modern Computer
Science

English mathematician

Studied abstract machines called
B Turing machines even before
computers existed

Heard of the Turing test?

e An abstraction of the notion of a “problem”

e Problems are cast either as Languages (= sets of
“Strings”)
e "Solutions” determine if a given “string” is in the set or not
@ e.g., Is a given integer, n, prime?
e Or, as transductions between languages

e “Solutions” transduce/transform the input string to an output
string
@ e.g., What is 3+5?

e Automata (singular Automaton) are abstract
mathematical devices that can

e Determine membership in a set of strings
e Transduce strings from one set to another

e They have all the aspects of a computer
e input and output
@ memory
e ability to make decisions
e transform input to output

e Memory is crucial:

e Finite Memory
@ Infinite Memory

@ Limited Access
@ Unlimited Access

Example: A simple computer

S

E\N\/ o input: switch
output: light bulb
actions: flip switch
states: on, off

Example of a finite automaton

f

There are states off and on, the automaton starts in off and
tries to reach the “good state” on

What sequences of /5 lead to the good state?

Answer: i/, (11 1 .-+ = {f ™ nis odd}

This is an example of a deterministic finite automaton over
alphabet {/}

Different kinds of automata

This was only one example of a computational device, and there are
others

We will look at different devices, and look at the following questions:
> What can a given type of device compute, and what are its limitations?
> |s one type of device more powerful than another?

Some devices we will see

finite automata Devices with a finite amount of memory.
Used to model “small” computers.

push-down Devices with infinite memory that can be
automata accessed in a restricted way.

Used to model parsers, etc.

Turing Machines Devices with infinite memory.

Used to model any computer.

time-bounded Infinite memory, but bounded running time.

Turing Machines Used to model any computer program that

Some highlights of the course

Finite automata

We will understand what kinds of things a device with finite
memory can do, and what it cannot do

Introduce simulation: the ability of one device to “imitate”
another device

Introduce nondeterminism: the ability of a device to make
arbitrary choices

Push-down automata

These devices are related to grammars, which describe the
structure of programming (and natural) languages

Some highlights of the course

Turing Machines

> This is a general model of a computer, capturing anything we could ever hope
to compute

> Surprisingly, there are many things that we cannot compute, for example:

> |t seems that you should be able to tell just by looking at the program, but it is
impossible to do!

Some highlights of the course

Time-bounded Turing Machines

> Many problems are possible to solve on a computer in principle, but take too
much time in practice

Applications

Lexical analyzer

il|£]](X w12 (31 [

X L Character Stream

Lexical
Analyzer
@ Token Stream
KEYWORD BRACKET IDENTIFIER OPERATOR NUMBER
"if" ” (II llx" ll>" !l3 X 1"

lons

ICat

Appl

Bioinformatics

Applications

Software verification

Natural language processing

e An abstraction of the notion of a “problem”

e Problems are cast either as Languages (= sets of
“Strings”)
e "Solutions” determine if a given “string” is in the set or not
@ e.g., Is a given integer, n, prime?
e Or, as transductions between languages

e “Solutions” transduce/transform the input string to an output
string
@ e.g., What is 3+5?

Decision problems

e A decision problem is a function with a YES/NO

output

e We need to specify

o the set A of possible inputs (usually A is infinite)
e the subset B C A of YES instances (usually B is also infinite)

e The subset B should have a finite description!

o A: set of all pairs (G,)
e Gis a {finite set of triples of the sort (/,j, w)},
@ /and j are integers and w is real
e The finite set encodes the edges of a weighted directed
graph G.
o A={...({...,(3,4,5.6),...},8.0),...}

o Each pairin A, (G, t), represents a graph G and a

threshold t

e Does GG have a path that goes through all nodes
once with total weight < t?
e Travelling Salesperson Problem

o Alis the set of all TSP instances.

WAY
-

1 o
. ' -
. 1 N »
. S ’ ' e - — - -
-~ o 1 t c
i e |ﬁ7‘\ .

27

:L Problems

= Examples of problems we will consider

= Glven a s, does It contain the subword “Hello”?
= Given a n, 1S it divisible by 77
= Given a sand ¢ are they the same?

= Given an expression with brackets, e.g. (() ()), does
every left bracket match with a subsequent right bracket?

= All of these have “yes/no” answers.

= There are other types of problems, that ask
or but we won't look at those.

-

e In real life, we use many different types of data:
Integers, reals, vectors, complex numbers,
graphs, programs (your program is somebody
else’s data).

e These can all be encoded as strings
e S0 we will have only one data type: strings

29

:L Alphabet

An alphabet is a finite, non-empty set of symbols
= We use the symbol) (sigma) to denote an alphabet

= Examples:

Binary: > ={0,1}

All lower case letters:) ={a,b,c,..z}
Alphanumeric:) ={a-z, A-Z, 0-9}
DNA molecule letters:) ={a,c,q,t}

30

:L Strings

A string or word is a finite sequence of symbols chosen from)
= Empty string is 4 (or “lambda”)

= Length of a string w, denoted by “|w|", is equal to the number of
(non- A) characters in the string

= E.g., x=010100 IX| =6
= X=01404140024 IX| =72

= XYy = concatentation of two strings x and y

31

S

o If a€ X, we use a" to denote a string of n a's
concatenated
e ¥ ={0,1},0° = 00000
0 & =ger €
o &' =, a"a

o The reverse of a string w is denoted by w*.

@ U./‘R:an,...,a‘l

32

:h Powers of an alphabet

Let > be an alphabet.

= YK =the set of all strings of length k
= >*=50U>TU>2U ...
« >T=51TUD2U >3 U ...

e X" Is a countably infinite set of finite length strings

33

:h Language

e A language L over X is any subset of L*

f
Finite Vi

Infinite

e L can be finite or (countably) infinite

34

=

o L =Y* - The mother of all languages!
o L =1{a, ab, aab} — A fine finite language.
e Description by enumeration
o L={a"b":n> 0} = {¢, ab, aabb, aaabbb, ...}
o L ={w|ny(w) is even}
e ny(w) denotes the number of occurrences of x in w
e all strings with even number of a’s.

o L = {wjw=wh}
e All strings which are the same as their reverses —
palindromes.

35

e Since languages are sets, all usual set operations
such as intersection and union, etc. are defined.

o Complementation is defined with respect to the
universe >* : L=3%*— L

e If L, Ly and L, are languages:
o Li-Ly={xy|xeLyand y € L}
o %= {e}and L"=L""1.L
o L* = Ugo L
o L+:UC1>OL":L"‘—{E}

The Chomsky Hierachy

A containment hierarchy of classes of formal languages

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

) - |
A

™ g
J

| 1 8 ~.

L\ ,

‘l\

37

Languages & Grammars

An alphabet is a set of symbols: = Languages: “A language is a collection

Or “words’ - of sentences of finite length all
\ Sentences are strings of symbols: constructed from a finite alphabet of

L il

: = Grammars: “A grammar can be

A language is a set of sentences: regarded as a device that enumerates

_ the sentences of a language” - nothing
L more, nothing less

A arammar is a finite list of rules

defining a language.

= N. Chomsky, Information and Control,
Vol 2, 1959

Image source: Nowak et al. Nature, vol 417, 2002 38

