
Formal languages and
automata

https://t.me/fla_uog

mh.olyaee@gmail.com

Introduction

◼ Study of abstract computing devices, or “machines”

◼ Automaton = an abstract computing device
◼ Note: A “device” need not even be a physical hardware!

◼ Computations happen everywhere: On your laptop, on your cell
phone, in nature, …

◼ A fundamental question in computer science:
◼ Find out what different models of machines can do and cannot do

What is this course about? – Formal
Languages

5

Alan Turing (1912-1954)

Father of Modern Computer
Science

English mathematician

Studied abstract machines called
Turing machines even before
computers existed

Heard of the Turing test?

(A pioneer of automata theory)

Example: A simple computer

BATTERY

input: switch

output: light bulb

actions: flip switch

states: on, off

Example of a finite automaton

There are states off and on, the automaton starts in off and
tries to reach the “good state” on

What sequences of fs lead to the good state?

Answer: {f, fff, fffff, …} = {f n: n is odd}

This is an example of a deterministic finite automaton over
alphabet {f}

off on

f

f

Different kinds of automata
This was only one example of a computational device, and there are
others

We will look at different devices, and look at the following questions:
◦ What can a given type of device compute, and what are its limitations?

◦ Is one type of device more powerful than another?

Some devices we will see
finite automata Devices with a finite amount of memory.

Used to model “small” computers.

push-down

automata

Devices with infinite memory that can be

accessed in a restricted way.

Used to model parsers, etc.

Turing Machines Devices with infinite memory.

Used to model any computer.

time-bounded

Turing Machines

Infinite memory, but bounded running time.

Used to model any computer program that

runs in a “reasonable” amount of time.

Some highlights of the course
Finite automata
◦ We will understand what kinds of things a device with finite

memory can do, and what it cannot do

◦ Introduce simulation: the ability of one device to “imitate”
another device

◦ Introduce nondeterminism: the ability of a device to make
arbitrary choices

Push-down automata
◦ These devices are related to grammars, which describe the

structure of programming (and natural) languages

Some highlights of the course
Turing Machines
◦ This is a general model of a computer, capturing anything we could ever hope

to compute

◦ Surprisingly, there are many things that we cannot compute, for example:

◦ It seems that you should be able to tell just by looking at the program, but it is
impossible to do!

Write a program that, given the code of another

program in C, tells it is complete or not!

Some highlights of the course

Hong Kong

Beijing

Shanghai
Xian

Guangzhou

Chengdu

Time-bounded Turing Machines
◦ Many problems are possible to solve on a computer in principle, but take too

much time in practice

◦ Traveling salesman: Given a list of cities, find the shortest way to visit them
and come back home

◦ Easy in principle: Try the cities in every possible order

◦ Hard in practice: For 100 cities, this would take 100+ years even on the fastest
computer!

Applications
Lexical analyzer

Applications
Bioinformatics

Applications
Software verification

Natural language processing

Decision problems

27

Problems

◼ Examples of problems we will consider

◼ Given a word s, does it contain the subword “Hello”?

◼ Given a number n, is it divisible by 7?

◼ Given a pair of words s and t, are they the same?

◼ Given an expression with brackets, e.g. (()()), does

every left bracket match with a subsequent right bracket?

◼ All of these have “yes/no” answers.

◼ There are other types of problems, that ask “Find this”

or “How many of that” but we won’t look at those.

29

30

Alphabet

An alphabet is a finite, non-empty set of symbols

◼ We use the symbol ∑ (sigma) to denote an alphabet

◼ Examples:
◼ Binary: ∑ = {0,1}

◼ All lower case letters: ∑ = {a,b,c,..z}

◼ Alphanumeric: ∑ = {a-z, A-Z, 0-9}

◼ DNA molecule letters: ∑ = {a,c,g,t}

◼ …

31

Strings

A string or word is a finite sequence of symbols chosen from ∑

◼ Empty string is 𝝀 (or “lambda”)

◼ Length of a string w, denoted by “|w|”, is equal to the number of
(non- 𝝀) characters in the string
◼ E.g., x = 010100 |x| = 6

◼ x = 01 𝝀 0 𝝀 1 𝝀 00 𝝀 |x| = ?

◼ xy = concatentation of two strings x and y

32

33

Powers of an alphabet

Let ∑ be an alphabet.

◼ ∑k = the set of all strings of length k

◼ ∑* = ∑0 U ∑1 U ∑2 U …

◼ ∑+ = ∑1 U ∑2 U ∑3 U …

Language

34

35

36

37

The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive

(LBA)

Recursively-

enumerable

(TM)

• A containment hierarchy of classes of formal languages

38

Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002

◼ Languages: “A language is a collection
of sentences of finite length all
constructed from a finite alphabet of
symbols”

◼ Grammars: “A grammar can be
regarded as a device that enumerates
the sentences of a language” - nothing
more, nothing less

◼ N. Chomsky, Information and Control,
Vol 2, 1959

